大家好,今天小编来为大家解答以下的问题,关于莫比乌斯带,莫比乌斯带怎么做这个很多人还不知道,现在让我们一起来看看吧!
如果带的两面代表两个独立事物,那莫比乌斯带最大的意义就是象征着融合,既可以代表爱情,宏观上看又可以象征着两个世界的交融,一个星球到达另一个星球是否有这样一条莫比乌斯路。
哲学上的意义:
1、两面即一面。即矛盾的对立统一。
2、沿中线剪开,第一次,得到一个更大的环;第二次及以以后,每次得到两个互相嵌套的环。即世界是普遍联系的。
数学上的意义:
莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。
换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。
拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。
扩展资料:
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。
特别地,它是一个有一纤维单位区间,I=[0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。
参考资料:百度百科-莫比乌斯带
莫比乌斯带也叫莫比乌斯环;是天文学家莫比乌斯和约翰•李斯丁在1858年独立发现的。这个结构很简单,用一个纸带旋转半圈再把两端粘上后就行了。
莫比乌斯环很奇妙,原先纸带有两个面,而它只有一个面。沿着原先莫比乌斯环中间剪开,将会形成一个比原先莫比乌斯环大一倍,具有正反两面的环,而不是形成两个莫比乌斯环或其他形式的环。
此外,莫比乌斯环在数学中是一种拓扑学结构,在空间,边界证明中有重要的作用。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家莫比乌斯和约翰·李斯丁在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。
普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”(也就是说,它的曲面从两个减少到只有一个)。
公元1858年,两名德国数学家莫比乌斯和JohannBenedictListing分别发现,一个扭转180度后再两头粘接起来的纸条,具有魔术般的性质。与普通纸带具有两个面(双侧曲面)不同,这样的纸带只有一个面(单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!这一神奇的单面纸带被称为“莫比乌斯带”(Möbiusstrip)。
作为一种典型的拓扑图形,莫比乌斯带引起了许多科学家的研究兴趣,并在生活和生产中有了一些应用。例如,动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。此外,莫比乌斯带也是艺术家眼中的经典造型。
科学家认为,当具有可展表面(developablesurface)的莫比乌斯带被折成之后,它要尽力达到具有最小弹性能量的状态。从20世纪30年代开始,一个关于莫比乌斯带的力学问题就始终困扰着科学家,即如何预测它的三维空间结构。在新的研究中,来自英国伦敦大学学院的非线性动力学家GertvanderHeijden和EugeneStarostin利用一组20年未发表的数学方程,解开了这一长达75年的难题。
奥古斯特·费迪南德·莫比乌斯(Mobius,AugustFerdinand)
【介绍】德国数学家,天文学家。1790年11月17日生于瑙姆堡附近的舒尔普福塔,1868年9月26日卒于莱比锡。1809年入莱比锡大学学习法律,后转攻数学、物理和天文。1814年获博士学位,1816年任副教授,1829年当选为柏林科学院通讯院士,1844年任莱比锡大学天文与高等力学教授。
麦比乌斯的科学贡献涉及天文和数学两大领域。他领导建立了莱比锡大学天文台并任台长。因发表《关于行星掩星的计算》而获得天文学家的赞誉,此外还著有《天文学原理》和《天体力学基础》等天文学著作。在数学方面,麦比乌斯发展了射影几何学的代数方法。他在其主要著作《重心计算》中,独立于J.普吕克等人而创立了代数射影几何的基本概念——齐次坐标。在同一著作中他还揭示了对偶原理与配极之间的关系,并对交比概念给出了完善的处理。麦比乌斯最为人知的数学发现是后来以他的名字命名的单侧曲面——麦比乌斯带。此外,麦比乌斯对拓扑学球面三角等其他数学分支也有重要贡献。
关于莫比乌斯带到此分享完毕,希望能帮助到您。
留言与评论(共有 0 条评论) |